Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29.142
1.
Eur J Med Res ; 29(1): 273, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720348

BACKGROUND: Previous studies suggested that zinc finger protein 536 (ZNF536) was abundant in the central brain and regulated neuronal differentiation. However, the role of ZNF536 in cancer has remained unclear. METHODS: ZNF536 mutation, copy number alteration, DNA methylation, and RNA expression were explored using public portals. Data from The Cancer Genome Atlas (TCGA) were utilized to analyze pathways and tumor microenvironment (TME), with a focus on prognosis in both TCGA and immunotherapy pan-cancer cohorts. Methylated ZNF536 from small cell lung cancer (SCLC) cell lines were utilized to train with probes for conducting enrichment analysis. Single-cell RNA profile demonstrated the sublocalization and co-expression of ZNF536, and validated its targets by qPCR. RESULTS: Genetic alterations in ZNF536 were found to be high-frequency and a single sample could harbor different variations. ZNF536 at chromosome 19q12 exerted a bypass effect on CCNE1, supported by CRISPR data. For lung cancer, ZNF536 mutation was associated with longer survival in primary lung adenocarcinoma (LUAD), but its prognosis was poor in metastatic LUAD and SCLC. Importantly, ZNF536 mutation and amplification had opposite prognoses in Stand Up To Cancer-Mark Foundation (SU2C-MARK) LUAD cohort. ZNF536 mutation altered the patterns of genomic alterations in tumors, and had distinct impacts on the signaling pathways and TME compared to ZNF536 amplification. Additionally, ZNF536 expression was predominantly in endocrine tumors and brain tissues. High-dimensional analysis supported this finding and further revealed regulators of ZNF536. Considering that the methylation of ZNF536 was involved in the synaptic pathway associated with neuroendocrine neoplasms, demonstrating both diagnostic and prognostic value. Moreover, we experimentally verified ZNF536 upregulated neuroendocrine markers. CONCLUSIONS: Our results showed that ZNF536 alterations in cancer, including variations in copy number, mutation, and methylation. We proved the involvement of ZNF536 in neuroendocrine regulation, and identified highly altered ZNF536 as a potential biomarker for immunotherapy.


Lung Neoplasms , Mutation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Prognosis , DNA Methylation , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic
2.
Clin Respir J ; 18(5): e13765, 2024 May.
Article En | MEDLINE | ID: mdl-38721812

LINC00857 is frequently dysregulated in varying cancers, which in turn exerts carcinogenic effects; however, its DNA methylation status in promoter region and molecular mechanisms underlying the progression of lung adenocarcinoma (LUAD) remain rarely understood. Through bioinformatics analysis, we examined the expression state and methylation site of LINC00857 in LUAD and further investigated the properties of LINC00857 as a competitive endogenous RNA in the cancer progression. The current study revealed that the overexpression of LINC00857 in LUAD tissue and cells was mainly caused by the hypomethylation of the promoter region. LINC00857 knockdown prominently reduced cell proliferation, impeded cell migration and invasion, and restrained lymph node metastasis, with enhancing radiosensitivity. The effects of LINC00857 on tumor growth were also investigated in nude mice models. Subsequently, the downstream factors, miR-486-5p and NEK2, were screened, and the putative regulatory axis was examined. Overall, the regulatory effect of methylation-mediated LINC00857 overexpression on miR-486-5p/NEK2 axis may be a new mechanism for LUAD progression.


Adenocarcinoma of Lung , Cell Proliferation , DNA Methylation , Disease Progression , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Up-Regulation , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Mice , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Cell Line, Tumor , Mice, Nude , Cell Movement/genetics , Male
3.
World J Surg Oncol ; 22(1): 128, 2024 May 10.
Article En | MEDLINE | ID: mdl-38725005

BACKGROUND: N6-methyladenosine (m6A) modification plays an important role in lung cancer. However, methyltransferase-like 14 (METTL14), which serves as the main component of the m6A complex, has been less reported to be involved in the immune microenvironment of lung cancer. This study aimed to analyze the relationship between METTL14 and the immune checkpoint inhibitor programmed death receptor 1 (PD-1) in lung cancer. METHODS: CCK-8, colony formation, transwell, wound healing, and flow cytometry assays were performed to explore the role of METTL14 in lung cancer progression in vitro. Furthermore, syngeneic model mice were treated with sh-METTL14 andan anti-PD-1 antibody to observe the effect of METTL14 on immunotherapy. Flow cytometry and immunohistochemical (IHC) staining were used to detect CD8 expression. RIP and MeRIP were performed to assess the relationship between METTL14 and HSD17B6. LLC cells and activated mouse PBMCs were cocultured in vitro to mimic immune cell infiltration in the tumor microenvironment. ELISA was used to detect IFN-γ and TNF-α levels. RESULTS: The online database GEPIA showed that high METTL14 expression indicated a poor prognosis in patients with lung cancer. In vitro assays suggested that METTL14 knockdown suppressed lung cancer progression. In vivo assays revealed that METTL14 knockdown inhibited tumor growth and enhanced the response to PD-1 immunotherapy. Furthermore, METTL14 knockdown enhanced CD8+T-cell activation and infiltration. More importantly, METTL14 knockdown increased the stability of HSD17B6 mRNA by reducing its m6A methylation. In addition, HSD17B6 overexpression promoted the activation of CD8+ T cells. CONCLUSION: The disruption of METTL14 contributed to CD8+T-cell activation and the immunotherapy response to PD-1 via m6A modification of HSD17B6, thereby suppressing lung cancer progression.


CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Lung Neoplasms , Methyltransferases , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Animals , Mice , Methyltransferases/metabolism , Methyltransferases/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Tumor Microenvironment/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Humans , Lymphocyte Activation , Mice, Inbred C57BL , Cell Proliferation , Tumor Cells, Cultured , Prognosis , Immunotherapy/methods , Female
4.
Clin Respir J ; 18(5): e13772, 2024 May.
Article En | MEDLINE | ID: mdl-38725348

Sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15) has been identified as an immune suppressor and a promising candidate for immunotherapy of cancer management. However, the association between Siglec-15 expression and clinicopathological features of lung adenocarcinoma (LUAD), especially the prognostic role, is not fully elucidated. In this present study, a serial of bioinformatics analyses in both tissue and cell levels were conducted to provide an overview of Siglec-15 expression. Real-time quantitative PCR (qPCR) test, western blotting assay, and immunohistochemistry (IHC) analyses were conducted to evaluate the expression of Siglec-15 in LUAD. Survival analysis and Kaplan-Meier curve were employed to describe the prognostic parameters of LUAD. The results of bioinformatics analyses demonstrated the up-regulation of Siglec-15 expression in LUAD. The data of qPCR, western blotting, and IHC analyses further proved that the expression of Siglec-15 in LUAD tissues was significantly increased than that in noncancerous tissues. Moreover, the expression level of Siglec-15 protein in LUAD was substantially associated with TNM stage. LUAD cases with up-regulated Siglec-15 expression, positive N status, and advance TNM stage suffered a critical unfavorable prognosis. In conclusion, Siglec-15 could be identified as a novel prognostic biomarker in LUAD and targeting Siglec-15 may provide a promising strategy for LUAD immunotherapy.


Adenocarcinoma of Lung , Biomarkers, Tumor , Lung Neoplasms , Humans , Prognosis , Female , Male , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/mortality , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Aged , Immunohistochemistry , Neoplasm Staging , Up-Regulation , Immunoglobulins/metabolism , Immunoglobulins/genetics , Lectins/metabolism , Lectins/genetics , Survival Analysis , Membrane Proteins
5.
Med Oncol ; 41(6): 147, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733492

Wnt/ß-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/ß-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900-5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/ß-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/ß-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited ß-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/ß-catenin signaling pathway through the increase of Axin1 protein stability.


Axin Protein , Cell Proliferation , Lung Neoplasms , Mice, Nude , Wnt Signaling Pathway , Humans , Axin Protein/metabolism , Wnt Signaling Pathway/drug effects , Animals , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Protein Stability/drug effects , Xenograft Model Antitumor Assays , A549 Cells , beta Catenin/metabolism , beta Catenin/antagonists & inhibitors , Wnt3A Protein/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C
6.
Respir Res ; 25(1): 198, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720340

BACKGROUND: The association between tuberculous fibrosis and lung cancer development has been reported by some epidemiological and experimental studies; however, its underlying mechanisms remain unclear, and the role of macrophage (MФ) polarization in cancer progression is unknown. The aim of the present study was to investigate the role of M2 Arg-1+ MФ in tuberculous pleurisy-assisted tumorigenicity in vitro and in vivo. METHODS: The interactions between tuberculous pleural effusion (TPE)-induced M2 Arg-1+ MФ and A549 lung cancer cells were evaluated. A murine model injected with cancer cells 2 weeks after Mycobacterium bovis bacillus Calmette-Guérin pleural infection was used to validate the involvement of tuberculous fibrosis to tumor invasion. RESULTS: Increased CXCL9 and CXCL10 levels of TPE induced M2 Arg-1+ MФ polarization of murine bone marrow-derived MФ. TPE-induced M2 Arg-1+ MФ polarization facilitated lung cancer proliferation via autophagy signaling and E-cadherin signaling in vitro. An inhibitor of arginase-1 targeting M2 Arg-1+ MФ both in vitro and in vivo significantly reduced tuberculous fibrosis-induced metastatic potential of lung cancer and decreased autophagy signaling and E-cadherin expression. CONCLUSION: Tuberculous pleural fibrosis induces M2 Arg-1+ polarization, and M2 Arg-1+ MФ contribute to lung cancer metastasis via autophagy and E-cadherin signaling. Therefore, M2 Arg-1+ tumor associated MФ may be a novel therapeutic target for tuberculous fibrosis-induced lung cancer progression.


Arginase , Autophagy , Disease Progression , Lung Neoplasms , Macrophages , Signal Transduction , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/microbiology , Humans , Mice , Autophagy/physiology , Arginase/metabolism , Signal Transduction/physiology , Macrophages/metabolism , Macrophages/pathology , Tuberculosis, Pleural/pathology , Tuberculosis, Pleural/metabolism , A549 Cells , Mice, Inbred C57BL , Pleural Effusion/metabolism , Pleural Effusion/pathology , Cell Polarity/physiology
7.
J Transl Med ; 22(1): 442, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730286

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Choline , Endothelial Cells , Lung Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Choline/metabolism , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Middle Aged , Prognosis , Immunotherapy , Immunosuppression Therapy , Kaplan-Meier Estimate , Nomograms , Metabolic Reprogramming
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731909

Lung cancer is the leading cause of cancer-related mortality worldwide. In order to improve its overall survival, early diagnosis is required. Since current screening methods still face some pitfalls, such as high false positive rates for low-dose computed tomography, researchers are still looking for early biomarkers to complement existing screening techniques in order to provide a safe, faster, and more accurate diagnosis. Biomarkers are biological molecules found in body fluids, such as plasma, that can be used to diagnose a condition or disease. Metabolomics has already been shown to be a powerful tool in the search for cancer biomarkers since cancer cells are characterized by impaired metabolism, resulting in an adapted plasma metabolite profile. The metabolite profile can be determined using nuclear magnetic resonance, or NMR. Although metabolomics and NMR metabolite profiling of blood plasma are still under investigation, there is already evidence for its potential for early-stage lung cancer diagnosis, therapy response, and follow-up monitoring. This review highlights some key breakthroughs in this research field, where the most significant biomarkers will be discussed in relation to their metabolic pathways and in light of the altered cancer metabolism.


Biomarkers, Tumor , Lung Neoplasms , Metabolomics , Humans , Lung Neoplasms/blood , Lung Neoplasms/diagnosis , Lung Neoplasms/metabolism , Biomarkers, Tumor/blood , Metabolomics/methods , Early Detection of Cancer/methods , Metabolome , Magnetic Resonance Spectroscopy/methods
9.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732063

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-ß1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.


Carcinoma, Non-Small-Cell Lung , Cell Movement , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , ErbB Receptors , Gefitinib , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Gefitinib/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
10.
Clin Respir J ; 18(5): e13774, 2024 May.
Article En | MEDLINE | ID: mdl-38742362

OBJECTIVE: This study aimed to explore the application value of human epididymis protein 4 (HE4) in diagnosing and monitoring the prognosis of lung cancer. METHODS: First, TCGA (The Cancer Genome Atlas) databases were used to analyze whey-acidic-protein 4-disulfide bond core domain 2 (WFDC2) gene expression levels in lung cancer tissues. Then, a total of 160 individuals were enrolled, categorized into three groups: the lung cancer group (n = 80), the benign lesions group (n = 40), and the healthy controls group (n = 40). Serum HE4 levels and other biomarkers were quantified using an electro-chemiluminescent immunoassay. Additionally, the expression of HE4 in tissues was analyzed through immunohistochemistry (IHC). In vitro cultures of human airway epithelial (human bronchial epithelial [HBE]) cells and various lung cancer cell lines (SPC/PC9/A594/H520) were utilized to detect HE4 levels via western blot (WB). RESULTS: Analysis of the TCGA and UALCAN (The University of Alabama at Birmingham Cancer Data Analysis Portal) databases showed that WFDC2 gene expression levels were upregulated in lung cancer tissues (p < 0.01). Compared with the control group and the benign group, HE4 was significantly higher in the serum of patients with lung cancer (p < 0.001). Receiver operating characteristic (ROC) analysis confirmed that HE4 had better diagnostic efficacy than classical markers in the differential diagnosis of lung cancer and benign lesions and had the highest diagnostic value in lung adenocarcinoma (area under the ROC curve [AUC] = 0.826). HE4 increased in early lung cancer and positively correlated with poor prognosis (p < 0.001). Moreover, the results of WB and IHC revealed that the expression of HE4 was increased in lung cancer cells (SPC/A549/H520) and lung cancer tissues but decreased in PC9 cells with a lack of exon EGFR19 (p < 0.05). CONCLUSION: Serum HE4 emerges as a promising novel biomarker for the diagnosis and prognosis assessment of lung cancer.


Biomarkers, Tumor , Lung Neoplasms , WAP Four-Disulfide Core Domain Protein 2 , Humans , WAP Four-Disulfide Core Domain Protein 2/metabolism , WAP Four-Disulfide Core Domain Protein 2/analysis , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Male , Prognosis , Female , Middle Aged , Proteins/metabolism , Proteins/genetics , Aged , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Immunohistochemistry
11.
Respir Res ; 25(1): 206, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745285

BACKGROUND: Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures. METHODS: This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into different ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells geneset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted to explore the role of ICSMRGs in LUAD. RESULTS: Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical characteristics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but displayed resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant prognostic value and emerged as a risk factor for the majority of cancer patients. CONCLUSIONS: ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor microenvironment and predicting treatment responsiveness.


Adenocarcinoma of Lung , Copper , Iron , Lung Neoplasms , Machine Learning , Sulfur , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Sulfur/metabolism , Copper/metabolism , Prognosis , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/drug therapy , Iron/metabolism , Treatment Outcome , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Predictive Value of Tests , Male , Female
12.
Pathol Oncol Res ; 30: 1611593, 2024.
Article En | MEDLINE | ID: mdl-38706776

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


B7-H1 Antigen , Biomarkers, Tumor , Carcinoma, Squamous Cell , Gene Amplification , Lung Neoplasms , Rapamycin-Insensitive Companion of mTOR Protein , Humans , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Female , Male , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Middle Aged , Aged , In Situ Hybridization, Fluorescence/methods , Prognosis , Aged, 80 and over
13.
J Biochem Mol Toxicol ; 38(5): e23715, 2024 May.
Article En | MEDLINE | ID: mdl-38704830

Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-ß), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-ß, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.


Carcinoma, Non-Small-Cell Lung , Core Binding Factor Alpha 3 Subunit , Down-Regulation , Lung Neoplasms , Mice, Nude , MicroRNAs , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , MicroRNAs/genetics , T-Lymphocytes, Regulatory/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Animals , RNA, Long Noncoding/genetics , Mice , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Tumor Escape , A549 Cells , Gene Expression Regulation, Neoplastic , Male , Mice, Inbred BALB C , Cell Line, Tumor , Female , Cell Proliferation
14.
J Exp Clin Cancer Res ; 43(1): 134, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698468

BACKGROUND: Mucosal-associated invariant T (MAIT) cells have been reported to regulate tumor immunity. However, the immune characteristics of MAIT cells in non-small cell lung cancer (NSCLC) and their correlation with the treatment efficacy of immune checkpoint inhibitors (ICIs) remain unclear. PATIENTS AND METHODS: In this study, we performed single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence assays to determine the proportion and characteristics of CD8+MAIT cells in patients with metastatic NSCLC who did and did not respond to anti-PD-1 therapy. Survival analyses were employed to determine the effects of MAIT proportion and C-X-C chemokine receptor 6 (CXCR6) expression on the prognosis of patients with advanced NSCLC. RESULTS: The proportion of activated and proliferating CD8+MAIT cells were significantly higher in responders-derived peripheral blood mononuclear cells (PBMCs) and lung tissues before anti-PD-1 therapy, with enhanced expression of cytotoxicity-related genes including CCL4, KLRG1, PRF1, NCR3, NKG7, GZMB, and KLRK1. The responders' peripheral and tumor-infiltrating CD8+MAIT cells showed an upregulated CXCR6 expression. Similarly, CXCR6+CD8+MAIT cells from responders showed higher expression of cytotoxicity-related genes, such as CST7, GNLY, KLRG1, NKG7, and PRF1. Patients with ≥15.1% CD8+MAIT cells to CD8+T cells ratio and ≥35.9% CXCR6+CD8+MAIT cells to CD8+MAIT cells ratio in peripheral blood showed better progression-free survival (PFS) after immunotherapy. The role of CD8+MAIT cells in lung cancer immunotherapy was potentially mediated by classical/non-classical monocytes through the CXCL16-CXCR6 axis. CONCLUSION: CD8+MAIT cells are a potential predictive biomarker for patients with NSCLC responding to anti-PD-1 therapy. The correlation between CD8+MAIT cells and immunotherapy sensitivity may be ascribed to high CXCR6 expression.


Carcinoma, Non-Small-Cell Lung , Immune Checkpoint Inhibitors , Immunotherapy , Lung Neoplasms , Mucosal-Associated Invariant T Cells , Receptors, CXCR6 , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Receptors, CXCR6/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Male , Female , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Middle Aged , Aged , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism
15.
J Transl Med ; 22(1): 426, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711085

BACKGROUND: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1+ lymphocytes. Due to solid tumor heterogeneity of PD-1+ populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1+ tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging. METHODS: We designed a 13 kDa ß-sheet Myomedin scaffold combinatorial library by randomization of 12 mutable residues, and in combination with ribosome display, we identified anti-PD-1 Myomedin variants (MBA ligands) that specifically bound to human and murine PD-1-transfected HEK293T cells and human SUP-T1 cells spontaneously overexpressing cell surface PD-1. RESULTS: Binding affinity to cell-surface expressed human and murine PD-1 on transfected HEK293T cells was measured by fluorescence with LigandTracer and resulted in the selection of most promising variants MBA066 (hPD-1 KD = 6.9 nM; mPD-1 KD = 40.5 nM), MBA197 (hPD-1 KD = 29.7 nM; mPD-1 KD = 21.4 nM) and MBA414 (hPD-1 KD = 8.6 nM; mPD-1 KD = 2.4 nM). The potential of MBA proteins for imaging of PD-1+ populations in vivo was demonstrated using deferoxamine-conjugated MBA labeled with 68Galium isotope. Radiochemical purity of 68Ga-MBA proteins reached values 94.7-99.3% and in vitro stability in human serum after 120 min was in the range 94.6-98.2%. The distribution of 68Ga-MBA proteins in mice was monitored using whole-body positron emission tomography combined with computerized tomography (PET/CT) imaging up to 90 min post-injection and post mortem examined in 12 mouse organs. The specificity of MBA proteins was proven by co-staining frozen sections of human tonsils and NSCLC tissue biopsies with anti-PD-1 antibody, and demonstrated their potential for mapping PD-1+ populations in solid tumors. CONCLUSIONS: Using directed evolution, we developed a unique set of small binding proteins that can improve PD-1 diagnostics in vitro as well as in vivo using PET/CT imaging.


Positron-Emission Tomography , Programmed Cell Death 1 Receptor , Protein Engineering , Humans , Programmed Cell Death 1 Receptor/metabolism , Animals , Positron-Emission Tomography/methods , HEK293 Cells , Mice , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Amino Acid Sequence
16.
Cancer Res ; 84(10): 1543-1545, 2024 May 15.
Article En | MEDLINE | ID: mdl-38745495

Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin ß3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin ß3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while ß3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvß3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.


Integrin alphaVbeta3 , Lung Neoplasms , Humans , Integrin alphaVbeta3/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Animals , Signal Transduction , Mice , Oxidative Phosphorylation , Stress, Physiological , Nutrients/metabolism
17.
Tunis Med ; 102(4): 223-228, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38746962

AIM: Our study aimed to perform on Moroccan patients' non-small cell lung carcinoma (NSCLC) concerning the relationship between PD-L1 tumor expression, clinicopathological features and tumor infiltrating immune cells (ICs). METHODS: This is a retrospective study (2019 to 2021) conducted on samples from Moroccan patients with NSCLC at the Pathological Anatomy Laboratory of Ibn Rochd University Hospital in Casablanca. Eligible participants for our study had to meet the following predefined criteria: age ≥18 years, histologically confirmed NSCLC, no prior therapeutic interventions, availability of clinical and pathological data, and a usable tumor sample for determining PD-L1 status. Exclusion criteria applied to patients with other types of lung cancer and unusable tumor samples. The evaluation of tumor and immune expression of PD-L1 was performed using immunohistochemistry (IHC), with the 22C3 clone on the Dako Autostainer Link 48 platform. Tumor PD-L1 expression was categorized into 3 levels: TPS <1% (negative expression), TPS 1-49% (low expression), and TPS ≥50% (high expression). ICs infiltrating the tumor expressing PD-L1 were considered positive when more than 1% of positive ICs were present. RESULTS: Among the 316 analyzed samples, 56.6% showed a negative expression of PD-L1, 16.8% displayed a low expression of PD-L1, and 26.6% exhibited a strong expression. Regarding the histological type, among patients with TPS ≥ 50%, 25.8% had adenocarcinoma. Among patients with TPS ≥ 50%, 24.81% were smokers. PD-L1 was also strongly expressed in the lung (28.2%) and bronchi (26.5%). PD-L1 expression (TPS ≥ 50%) was observed in 35.29% of early-stage patients. Concerning tumor cells (TCs), 27.5% of tumors infiltrated by ICs had TPS ≥ 50%. Furthermore, coexpression of PD-L1 on both TCs and ICs infiltrating the tumor was found in 27.8% of tumors. Statistical analysis demonstrated a significant association between tumor PD-L1 expression and smoking status (P=0.019). However, no significant difference was observed between PD-L1 expression and the presence of ICs infiltrating the tumor (P=0.652), as well as the IHC expression of PD-L1 on ICs (P=0.259). CONCLUSION: Our results demonstrate a significant association between PD-L1 expression and smoking status. However, no significant association was observed between PD-L1 expression and the presence of infiltrating ICs, nor with the IHC expression of PD-L1 on ICs. Our data underscore the importance of participating in the study of specific factors influencing PD-L1 expression in patients with NSCLC.


B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphocytes, Tumor-Infiltrating , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/analysis , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/immunology , Male , Female , Middle Aged , Retrospective Studies , Aged , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Lymphocytes, Tumor-Infiltrating/metabolism , Morocco/epidemiology , Adult , Immunohistochemistry , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Aged, 80 and over
18.
Proc Natl Acad Sci U S A ; 121(21): e2403685121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38743625

The tumor suppressor LKB1 is a serine/threonine protein kinase that is frequently mutated in human lung adenocarcinoma (LUAD). LKB1 regulates a complex signaling network that is known to control cell polarity and metabolism; however, the pathways that mediate the tumor-suppressive activity of LKB1 are incompletely defined. To identify mechanisms of LKB1-mediated growth suppression, we developed a spheroid-based cell culture assay to study LKB1-dependent growth. We then performed genome-wide CRISPR screens in spheroidal culture and found that LKB1 suppresses growth, in part, by activating the PIKFYVE lipid kinase. Finally, we used chemical inhibitors and a pH-sensitive reporter to determine that LKB1 impairs growth by promoting the internalization of wild-type EGFR in a PIKFYVE-dependent manner.


AMP-Activated Protein Kinase Kinases , Phosphatidylinositol 3-Kinases , Protein Serine-Threonine Kinases , Spheroids, Cellular , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Spheroids, Cellular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Cell Proliferation , Cell Line, Tumor , CRISPR-Cas Systems , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
20.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Article En | MEDLINE | ID: mdl-38708182

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Antineoplastic Agents , Artemisinins , Drug Resistance, Neoplasm , Imidazoles , Lung Neoplasms , Metal-Organic Frameworks , Reactive Oxygen Species , Artemisinins/chemistry , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Animals , Humans , Reactive Oxygen Species/metabolism , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacokinetics , Metal-Organic Frameworks/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Hydrogen-Ion Concentration , A549 Cells , Drug Liberation , Mice, Nude , Apoptosis/drug effects , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Hemolysis/drug effects
...